
International Journal of Scientific & Engineering Research, Volume 7, Issue 6, June-2016 945
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

A New Hybrid Process for Software Development
and Localisation

Mathurin Soh, Marcellin Nkenlifack, Laure P. Fotso

Abstract—In this paper, we propose a new approach to make it easier and safer localisation in the development of software systems. It
allows describing the cultural elements and mechanisms to develop specific development process oriented models, adapted to the
localisation. This approach relies on the identification of linguistic and cultural considerations in all stages of the development process
takes place in two phases: The first phase called internationalization or pre-localisation is to describe a high level of abstraction different
cultural aspects of the needs of both functional and non-functional. These descriptions are then analysed and instantiated in a second
phase called post-localisation, to adapt the code to facilitate the construction and verification of software system adapted to the client's
culture. This new hybrid development process can take into account the cultural aspects from the design and benefit of internationalization
and localisation, in the phases of the software life cycle. We illustrate our approach with the design and development of a billing
application. The results show that the new proposed approach is better than the localisation after software development. The proposed
approach produces more flexible applications, adaptable and maintainable with relatively low costs and delays.

Index Terms— Culture Considerations, Internationalization, Localisation, Software Development, Software Localisation, Process

—————————— ——————————

1 INTRODUCTION
HE evolution of the discipline of software engineering,
comparing it with other older and more mature sciences
(such as architecture) was studied in 1990; software engi-

neering is still in its infancy as a science and discipline and
must still evolve and to mature to perfect its development[1].
But much progress has been made in recent years, experience
accumulates and it is time for a new era for software devel-
opment, with production software adapted to the culture of
the end user. In the production of the software for different
markets, there is a need for localization. This latter (often ab-
breviated to “L10n”) is defined by the Localisation Industry
Standards Association (LISA) as the process of taking a prod-
uct and making it linguistically and culturally appropriate to
the target locale (country/region and language) where it will
be used and sold (Esselink, 2000, p.3). This process needs to
take into account the requirements of companies and target
markets, generally encapsulated in cultural considerations
results in a software product adaptation in several languages
or for a country or region.
Many localisation efforts are met with frustration the customer
once the software is produced. For example, text messages are
altered, the fonts are not accurate or sometimes are truncated,
encoding of exotic languages does not look right, and in gen-
eral, the software products might not work as expected. A

typical method to develop multiple versions of a local soft-
ware application comprises two steps.

1. A step of internationalization during which qualified
for developers to outsource any specific code elements
to regions (e.g., unit measurements, date formats, spe-
cific data writing direction, and sometimes laws and
policies) in resource files;

2. A step called localisation that allows software to trans-
form the original resource file in local resource files for
specific regions and cultural areas [2].

The localisation of a software project often covers a long peri-
od of time during the evolution of software [3]. Although cul-
ture has been recognized as one of the factors in the design of
the interface, in computer science and in engineering in gen-
eral, software products are often considered to be culturally
neutral[4]. Culture is then an important factor in the design,
modelling and theory. However, we believe it is impossible
for designers, application developers to separate from their
cultures, cultural issues are ubiquitous in computers, and they
affect the data representation, basic design data communica-
tion protocols, software engineering methods [5]. It is equally
important to recognize the contribution of technology and
software products in the crop. Similarly, in the design and
implementation of technology and software products, cultural
characteristics such as language, beliefs, values, morals, must
be recognized because they are involved in satisfying custom-
er requirements.
In section 2, we recall some terms and definitions, and sum-
marize the state of the art on current localisation practices.
Section 3 describes the new software development approach,
its features and benefits. Section 4 is dedicated to experimenta-
tion and evaluation. Section 5 concludes this paper.

2 STATE OF ART
In its current state, the Software Engineering is much turned

T

————————————————
• Mathurin Soh is currently pursuing a PhD degree program in computer

science at the University of Dschang, Cameroon, P.O. Box 67.
E-mail: mathurinsoh@gmail.com ; mathurinsoh.soh@univ-dschang.org

• Marcellin Nkenlifack, University of Dschang, Cameroon.
E-mail: marcellin.nkenlifack@univ-dschang.org

• Laure P. Fotso, University of Yaoundé 1, Cameroon
E-mail: laurepfotso@yahoo.com

IJSER

http://www.ijser.org/
mailto:mathurinsoh@gmail.com

International Journal of Scientific & Engineering Research, Volume 7, Issue 6, June-2016 946
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

towards the production of software systems and does not sufi-
ciently include their adaptations. Thus, it can rightly be called
a ‘Software Development Engineering’. Indeed, in current
methodologies of software engineering, software regionaliza-
tion considerations are not sufficiently taken into account. In
the literature, there is no conventional method of localisation
as it exists in the standard software engineering. The localisa-
tion engineering evokes expectations based on the standard
software engineering. However, software localisation alt-
hough it requires adaptation, also happens to be full produc-
tion business software.
Currently, the translation of the interface elements is entrusted
only to professionals, making along the translation process,
expensive and of poor quality [6]. As a result, software locali-
sation deserves to be as structured and properly conducted by
a range of methods, approaches and best practices. Software
localisation passes also through successive stages as software
development, from its conception to its death, and also there-
fore a life cycle. Whatever type designed and developed soft-
ware, either a thin client on a desktop computer, a cloud ser-
vice, a mobile applications or a website, the possible need for
its localisation should be assessed from the very beginning
even in the specifications or in the development process. In-
deed, aspects of software localisation exist throughout the
same process of development of this software, even before its
localisation. In the figure 1, we highlight different phases of
software development where cultural concerns can appear.
These aspects of localisation are embedded in the steps of clas-
sical software development tasks.

As shown in [7], in various situations, many software applica-
tions are not internationalized in the early stages of develop-
ment. To internationalize such existing applications, develop-
ers need to outsource some constant strings "hard coded" into
the resource files, so that translators can easily translate these
applications into a local language without changing the source
code. This internationalization of such applications has a cost
and takes time. Although the results of [7] applied by [8] pre-
sent an automatic approach of determination of elements to be

translated into an application, and requiring thereby localisa-
tion for internationalization needs, the developer would save
time thinking about the localisation aspects from the begin-
ning of the aforesaid software development process. This
could be avoided by following a rigorous localisation method.

 Zeyad et al shows that just 38% of software systems are local-
izable, and mostly including web applications are localized
[3]. If the cultural deaspects were considered, this would not
only reduce the cost of software internationalization, but also
the cost of localisation in one language or specific culture. For
every successful localisation project software requires a step of
Internationalization of the Software. This last step is to make a
separation between the business code and parameters related
to a region or a culture or a language. Language and cultural
considerations are taken into account in basic activities cov-
ered in all models: the analysis; the design, the implementa-
tion, the validation (especially in the testing, the integration),
the evolution (especially the maintenance). In these conditions,
developers for example would not be facing any program-
ming problems sometimes difficult for some languages.
According to Friedel Wolff [9], software development compa-
nies often think software localisation when trying to attract
new customers in a country where they were not yet estab-
lished. The localisation is thus a huge industry. Some engi-
neering practices lead to a misconception about the localisa-
tion, stating that it has to come at the end of the project and be
treated separately, or be partitioned from the rest of the devel-
opment. This attitude leads to poor localisations and drastical-
ly increases the overall cost [10] of the software. The localisa-
tion of open-source software is of relatively poor quality [3].
We believe that the use of a suited rigorous methodology ac-
companied by collaboration between the stakeholders would
improve the quality of software localisation.

3 IDENTIFICATION OF CULTURAL CONSIDERATIONS IN THE
SOFTWARE DEVELOPMENT PROCESS

Software development requires an orderly sequence of execu-
tion of activities including course aims to achieve a given ob-
jective. The challenges that everyone faces with some lan-
guages (such as Brazilian Portuguese) do not relate to interna-
tionalization, localisation of the software being developed.
These are very important accented characters in some lan-
guages; length of words which when developing software, the
programmer must not forget to put more width to the labels
for any text expansions/contractions; date formats and non-
uniformly recognized hour in all languages and cultures;
measurement units, some languages and cultures are different
from a large number of units used internationally; keyboard
used with grapheme are not the same for all languages; cur-
rencies and currency; the addresses are not uniform in all re-
gions, languages and cultures; electronic payments; import
duties are important for e-commerce applications; all lan-
guages of the world do not have the same writing direction.
Some languages like Yemba in the West Region of Cameroon
and Latin languages are written from left to right. On the oth-
er hand, the languages such as Arabic are written from right to
left. The software should take into account its operations in the

Fig. 1. Steps identified for the consideration of cultural aspects in soft-

ware processes development

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 6, June-2016 947
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

various language areas; the writing system, some languages
like Chinese have more than one; keyboard shortcuts; colors
and textures are very important in the localisation as different
colors and icons have also distinct meanings in different re-
gions; signs, icons and symbols; sounds.
 The main steps of the software processes have been defined
by standards (“IEEE Software Engineering Standards Collec-
tion” and the norm “AFNOR Z67-150”). These steps are re-
spectively the definition of software targets the expression of
needs, the design, the coding, the testing, the production, the
installation and the maintenance operation and the customer
feedback. The success of a software development project also
depends on the final product adaptability [5] considered in all
previous steps. This is the idea of globalization / internation-
alization. Items that should be translated include constant
strings, date / time items, number format objects, the culture-
related items. In particular, the determination of these ele-
ments to be localised is often the most time consuming task[5].
Thus, the software localisation engineering is an essential
complement to software localisation cycles and even to soft-
ware testing. It covers all the critical steps for successful locali-
sation and testing, including analysis software, the construc-
tion and mastering of engineering, fixing errors, and automa-
tion of the overall localisation process. In pursuing this
demonstration, we realize that this is true for all life cycles of
software. These life cycles do not consider sufficiently aspects
of their localisation in different stages. The identification and
isolation of the various localisation requirements at each phase
of the development process result in the Figure 2 below.

It appears that each phase of the software systems develop-
ment process is subject to issues of localisation and interna-
tionalization. For all the above remarks, we question the de-
velopment of specific Localisation Software Engineering. This
activity aims at reducing costs, improving quality in localising
and shortening delays in the localisation process.

4. A NEW SOFTWARE DEVELOPMENT APPROACH

A process is "a set of interrelated or interacting activities
which transforms input elements into outputs"(ISO 9000:
2000). This definition perfectly applies to the development /
localisation applications from their gestations, their births,
their growths, their developments, their deaths ... and to re-
births. This sequence of stages of life corresponds to the differ-
ent steps defined in a software process. The objective of such a
division is to define intermediate milestones for validation of
software development. That is to say the conformity of the
software with the needs expressed and the verification of the
development process that is the appropriateness of the meth-
ods implemented. The software life cycle must go through the
steps from the stage of expression of needs for establishment
of such software until its disappearance. It is thus normal to
consider more generally, the localisation needs from the needs
and requirements analysis till the maintenance of the software
to produce. The internationalization is done transversely dur-
ing all the activities of the development process. It leads to the
actual localisation from the beginning of the process. In this
sense, it is assimilated to a pre-localisation phase. Schematical-
ly, the process is as shown in Figure 3 below.

In this scheme, the following activities are presented:

(A) Requirements analysis: In addition to the analysis of func-
tional and non-functional needs, an analysis of localisation
requirements is needed. It is done by identifying the features
that will be subject to the localisation. The impact of these re-
quirements has many challenges that arise throughout the
development life cycle and software localisation [11].
(B) Design: This phase must integrate the design of interna-
tionalization that is, e.g set the text size to be internationalized,
icons, parts of the user interface.
(C) Implementation: During the implementation, the interna-
tionalization must be made for example in the use of global
variables, internationalization files, resource files, directories

Fig. 2 Steps and related cultural issues throughout the soft-
ware development process

Fig. 3 New software process for development and localisation

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 6, June-2016 948
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

dedicated to internationalization.
(D) Localisation: After cross internationalization in the previ-
ous steps, follows the localization, the "production" of the
software for a given language and culture. At this point, we
can assume that the initial development is done in a language
and driver for the software in that language, localisation step
is not necessary because the software is initially produced in
that language. But for any other language other than the "pilot
language," we must do the locating step of adapting the soft-
ware as localisation requirements initially analysed (for the
analysis stage), designed to step in design and implemented
during the implementation step.
(E) Test: In addition to the regular development process tests,
we also need the localisation of that test would be to reassure
the needs that had to be localized are effectively.
(F) Documentation: Documentation of the localisation is not
just a step. It is conducted transversely since the needs analy-
sis.
(G) Maintenance: Maintenance of localisation is to change
everything that is related to the localisation.
In Figure 3, the dotted lines between steps after localisation
just indicate that regular activity can generate the correspond-
ing localisation operation. For example, if maintenance of a
feature is triggered, it can also require maintenance of the cor-
responding localisation.

5. ILLUSTRATION AND EXEPRIMENTATION
5.1 Development of a billing application by the

classical approach
A) Analysis phase and needs collection
To establish an invoice, the application must take into account
information that will be provided by the user. A file represent-
ing such invoice will be generated and the user can print it.
Each invoice is stored (it is actually information about the bill)
and the user can consult and print as many times as he wishes.

• Identification of actors, use cases: The actors are in-
dividuals who interact with it. In our case the only actor is
the cashier. This is the person who is responsible to collect
the money and hand back a bill to the client. The different
features that can trigger this actor in the billing system are:
Establish an invoice; Consult a bill as shown in Figure 4 (a).

• Diagram of classes: The diagram shown in Figure 5 identi-
fies the system entities and their relationships with each
other. The different classes identified are: Product, Cus-
tomer, and Bill. The only relationship between a customer
and a product is that a customer can buy a product. From
this relation, result a class called “class association”, the
Invoice class.

• Diagram of interactions with the system: The previous
diagram of classes, does not describe the interactions be-
tween the various entities of the system. To consider this
important aspect, we develop better interaction diagrams
describing the exchanges during the realization of use cas-
es.

Fig. 4 (a) Diagram of use cases Obtained by the classical ap-

Fig. 4 (b) Diagram of use cases Obtained by the new approach

Fig. 5 Diagram of classes obtained both by the classical approach
and thenew approach

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 6, June-2016 949
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

B) Implementation phase
The implementation is done using the Java language through
the Integrated Development Environment (IDE) NetBeans 8.1.
The database is developed with the tool PostgreSQL 9.4. Fig-
ure 7 below shows an interface of the resulting program.

C) Test phase
The use of this program consists of a selection of products
chosen by a buyer. This action is entitled to a product registra-
tion in the database, as shown in Figure 7. The invoice is gen-

erated after validation of products chosen by the buyer as
shown in Figure 8 below.

5.2 Development of a billing program by the new pro-
posed approach
A) Analysis and needs collection
The application must allow to take into account information
that will be provided by the user. These include products cho-
sen by a purchaser and their quantities. An invoice will be
generated and the user can print it. Each invoice is stored and
the user can consult and print as many times as possible.
However, the application must be fully functional in the Yem-
ba cultural area. The application will thus have the opportuni-
ty to be transfer from one language to another and will inte-
grate the Cameroonian languages. End users will be able to
change the user language by selecting one that suits them. The
target language and pilot chosen for this illustration is the
Yemba language in the Menoua Division, West Region of
Cameroon.

B) Design phase
• Identification of actors, use cases: The only actor in the sys-
tem is the cashier. This is the person who is responsible to col-
lect money and to return an invoice to the customer. The dif-
ferent features that can trigger this actor in the billing system
are: Establish an invoice; Consult a bill and change the lan-
guage. These use cases are given in the uses cases diagram of
the previous Figure 4 (b).
• Diagram of classes: The diagram shown in Figure 5 let to
identify system entities and their relationships. The different
classes that we identified are: Product, Customer, and Invoice.
The only relationship between a customer and a product is
that a customer can buy a product. From this relation, we have
a “class association”, named Invoice class.
• Diagram of interactions with the system: The previous dia-
gram of classes, does not describe the interactions between the
various entities of the system. To account for this important
aspect, we develop better interaction diagrams describing the
exchanges during the realization of use cases.

Fig. 5 Diagram of interaction for the Etablishment of a bill

Fig. 6 Diagram of interaction for the consultation of a bill

Fig. 7: Product Selection Interface to charge

Fig.8: Application interface (Invoice established)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 6, June-2016 950
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

C) Implementation Phase
The application obtained after implementation with the Java
language through the Integrated Development Environment
(IDE NetBeans 8.1) is interfaced by the figure 11. The database
is developed with PostgreSQL 9.4. The products’ names in the
database are not localised into the target language, because as
suggested by [9] most cases, product and brand names should
be leave unchanged during localization.
An XML file referred to as fr_lang.xml related to interfaces of
resources is generated at the end of the transverse internation-
alization phase. Its configuration is as shown in Figure 10 (a).
In this file, each user interface element is described by an XML
tag that can have two sub tags. The first sub-tag <key> has the
key to the cultural element, and represents a kind of variable.
The second sub tag <content> is the value of the cultural ele-
ment.

Fig. 9(a): Interactions for the Etablishment of a bill

Fig.9(b): Interactions for the Consultation of a bill

Fig. 10: An extract part from the XML Resources File

Fig. 10(b): XML file for User Interface resources in Yemba

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 6, June-2016 951
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

D) Localisation phase
During this phase, we adapt as much as possible the target
culture elements in the resources localisation file, named
fr_lang.xml and generated after the transverse phase of inter-
nationalization. As well generic file, we search all the entries
corresponding to the input cultural elements (French). Then,
the target cultural elements (Yemba) are replaced in the gener-
ic resource file. The localized file is shown in Figure 10 (b). The
resulting Billing program has an User Interface shown is fig-
ure 11.

E) Test phase
This test phase is to ensure that all textual elements have been
translated and all other parameters have been localised in
Yemba, the target language and culture.

F) Documentation phase
For the documentation, it is aimed at producing a user manu-
al.

(G) Maintence and Customer’s feedback phase
During this phase, the customer reviews the program to en-
sure that his both functional and non-functional requirements
are met.

5.3 Evaluation and Summary of Findings
Our assessment is made on the basis of the criteria and the
usual evaluation software process metrics, including design
time and development costs and the quality of development /
localisation. According to [11] and [12], the cost, time and
quality are the main difficulties in software localisation. The
costs indicate the direct and indirect expenditures during the
localisation process. The time references the time of producing
a program through the localisation. Quality refers to the com-
pleteness, relevance, understand ability of localisation. Table 1

below summarizes the assessment.

This study found that the full development of a billing pro-
gram with the classical approach has a duration of 49 hours,
and the same work will last 46 hours with the new proposed
approach. According to this findings, the localization after
system development of the billing program take more time
than using the new proposed approach for the work. This
shows that the integration of localisation into the development
will be less time-consuming than the localisation after devel-
opment of software. In this study, we investigated whether the
integration of localisation into the development of software is
better than the localisation after system development. Our
results show that the dissociated approach is nearly less time
consuming during the steps before the localisation, than the
integrated one. But after, it is the contrary just because of the
actual localization step. And globally, it is the integrated ap-
proach which has a smaller duration.
Using the results of the comparison of Agile software process-
es and classical software processes, done by [13], we presents
in Table 2, a comparison between the proposed new software
approach and the others.

TABLE 1
EVALUATION OF COSTS IN THE DEVELOPMENT OF A BILLING PRO-

GRAM WITH CLASSICAL AND NEW PROPOSED PROCESS

Phase Steps
Time (in hours)

Classical
Approach

New ap-
proach

 P

re
-

lo
ca

lis
at

io
n

(I

nt
er

na
tio

n-
lis

at
io

n)

Requirements
analysis 4 5

Design 10 15

Implementation 15 12

Localisation Localisation 10 3

 P
os

t-
lo

ca
lis

at
io

n

Test 4 5
Production 1 1

Documentation 2 2
Maintenance 2 2
Customer’s
Feedback 1 1

Total 49 46

Fig 11: Billing program User Interface obtained by the new approach

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 6, June-2016 952
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

In the table 2, using selected criterion, we investigated wheth-
er the integration of localisation into the development of soft-
ware is better than the localisation after system development.
 The results also emphasize that the new proposed approach is
better than the localisation after development, even if the
software is analysed and produced through using the classical
or the agile software processes.

6 CONCLUSION
We have presented a new approach to take into account cul-
tural considerations in the development and localisation of
software systems. This approach relies on the identification of
cultural needs in all steps of development since the expression
and requirements analysis. First, it describes at a high level of
abstraction, different cultural aspects, both functional and
non-functional, of a system in the specification phase and ar-
chitecture. These descriptions are then analysed and grouped
in a resource file to facilitate the localisation, which is followed
by a post-localisation phase. We illustrated our approach by
designing and developing a billing application by the conven-

tional approach and by the proposed new approach. It follows
that the latter gives better results as regards the localisation of
the application cost, the time taken in this localisation as well
as a better quality of localisation. It can produce applications,
with a relatively low costs and it is less time consuming.

REFERENCES
[1] Mary Shaw : Prospects for an engineering discipline of software ;

IEEE Software, novembre1990, pp. 15-24.
[2] Bert Esselink. A Practical Guide to Localization. Amsterdam Phila-

delphia, 2000.
[3] Zeyad Alshaikh, Shaikh Mostafa, Xiaoyin Wang, and Sen He. A em-

pirical study on the status of software localization in open source
projects. Pages 692_695. Proceedings of The 27th International Con-
ference on Software Engineering and Knowledge Engineering, SEKE
2015, Wyndham Pittsburgh University Center, Pittsburgh, PA, USA,
July 6-8, 2015, 2015.

[4] Tedre, M., Sutinen, E., Kahkonen E., and Kommers, P. 2006. Ethno-
computing: ICT in cultural and social context. Communications
of the ACM, 49 (1). pp. 126-130. ISSN 0001-0782

[5] Keller, B., Pérez-Quiñones, M., and Vatrapu, R. (2006), “Cultural

TABLE 2
COMPARISON OF THE NEW SOFTWARE PROCESS FOR DEVELOPMENT AND LOCALISATION WITH CONVENTIONAL SOFTWARE PROCESSES

Criterion Classical Software Processes Agile Processes New proposed approach

Request for Changes at
any time during devel-

opment of product

Here change request is always rejected
throughout development.

Changes are acceptable at any
time during development.

Request for Changes can be accepted
at any time during development and
localization of product because of a

cross-cutting internationalisation

Delivery of product in
time/on time/early

Usually, deadlines are not meet and
mostly impossible to deliver product

before estimated deadline.

Delivery of product is as per
estimated deadlines i.e. always

delivered in or on time.
Product are delivered on time

Quality of product is a
major concern

In Waterfall model quality of product
is not as desired by customer, because
if user want some other changes then

it is not possible in one go (during
development time)

Quality is built-in; delivered
product always satisfies the
requirement or need of cus-

tomer

The quality of product and of locali-
zation is a major concern[12]

Involvement of custom-
er throughout develop-

ment

After submitting the requirements in
1st phase, customer gets involved only

on delivery of product.

Customer must be present at
each and every phase of de-

velopment.

The customer may always be pre-
sent in each of the development

phases, if the approach is combined
with a collaborative approach to

Agile location

Requirements This model is used, if requirements of
customer are clear and well defined

Agile model is used if re-
quirements of customer are

not clear or changes frequent-
ly.

Localisation requirements of cus-
tomer are clear and well defined

Pattern
Waterfall model is a sequential model,
means phases are always followed in

consecutive manner.

As change occur frequently, so
we can revisit any phase at

any time.

The approach to development /
localisation can be combined with

other traditional or agile approaches

Development time Development life cycle is longer as
compare to agile model.

If requirements are not so
clear, are gathered on daily
basis, then adopting agile

makes sense.

Development / localisation time are
shorter compared to the localisation
of a software after the development

by any other method[11]

Risk factor There is a lot of risk of not meeting
customer’s requirement

Risk is less in Agile develop-
ment because customer is

involved in each and every
phase of development.

The risk is moderated for cultural
requirements if the localization is

collaborative

Problem identification Late identification of problems Progressive identification of
problems

The identification of problems is
combined with an Agile method

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 6, June-2016 953
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

issues and opportunities in Computing Education”, 9th International
Conference on Engineering Education, R1E-14, July 23-28, 2006.

[6] A. Fraisse, C. Boitet, H. Blanchon and V. Bellynck. A Solution for in
Context and Collaborative Localization of Most Commercial and Free
Software. In Proceedings of LTC 2009 the 4th Language and Tech-
nology Conference, vol. 1/1 : pp. 536-540. November 6-8, 2009. Poz-
nan, Poland.

[7] Xiaoyin Wang, Lu Zhang, Tao Xie, Hong Mei, and Jiasu Sun. Locat-
ing needto-translate constant strings for software internationaliza-
tion. pages 353_363. International Conference on Software Engineer-
ing (ICSE), 2009, 2009.

[8] Xiaoyin Wang, Lu Zhang, Tao Xie, Hong Mei, and Jiasu Sun.
Transtrl : An automatic need-to-translate constant string locator for
software internationalization. pages 555_558. International Confer-
ence on Software Engineering (ICSE), Tool Demo, 2009, 2009.

[9] Wolff, F. 2011. Effecting change through localisation: Localisation
guide for free and open source software, IDRC, Canada.

[10] Simon Hill. What is localization and why should i care ?
http://localizedirect.com/posts/what-is-localization/, consulté le
30 mai 2016.

[11] Jesus Cardenosa, Carolina Gallardo, and Alvaro Martin. A practical
case of software localization after system development. International
Journal of Information Technologies and Knowledge, 1:121-127, 2007.

[12] Malte Ressin, José Abdelnour-Nocera, Stephen Roberts, Empirically
researching development of international software, Proceedings of
International Conference on Software Engineering, June 2012

[13] Pankaj Vohra and Ashima Singh. A contrast and comparison of
modern software process models. pages 23-27. International Confer-
ence on Advances in Management and Technology (iCAMT - 2013),
Proceedings published in International Journal of Computer Applica-
tions R (IJCA) (0975 _ 8887), 2013.

[14] A. Fraisse. Localisation interne et en contexte des logiciels commer-
ciaux et libres par des utilisateurs finaux. In Proceedings of In-
fol@ngues III 2009, NTICS, Langues et Humanités : Réalités et Per-
spectives. February 6-7, 2009. Tabarka, Tunisie.

IJSER

http://www.ijser.org/
https://www.researchgate.net/journal/0270-5257_Proceedings-International_Conference_on_Software_Engineering
https://www.researchgate.net/journal/0270-5257_Proceedings-International_Conference_on_Software_Engineering

	1 Introduction
	2 State of art
	3 Identification of cultural considerations in the software development process
	5.1 Development of a billing application by the classical approach

	6 Conclusion
	References

